number of gaps is

$$
P=\int_{N}^{N^{\prime}} d x / \log x
$$

while the number for $g=2$ or for $g=4$ is the well-known

$$
E_{2}=E_{4}=1.3203236317 \int_{N}^{N^{\prime}} d x / \log ^{2} x
$$

For larger g, Brent uses his formulae developed in [1].
The first 21 tables are for the intervals

$$
\begin{array}{ll}
\left(10^{i}, 10^{i}+10^{6}\right), & j=6(1) 15 \\
\left(10^{i}, 10^{i}+10^{7}\right), & j=7(1) 14 \\
\left(10^{6}, 10^{i}\right), & j=7,8,9
\end{array}
$$

For each interval there is listed the first and last prime; the observed population for each g : O_{g}; the expected number E_{g} for $g=2(2) 80$ according to the aforementioned formulas; the expected number for $g>80=P-\sum_{2}^{80} E_{g}$; the normalized differences $\left(O_{v}-E_{v}\right) /\left(E_{v}\right)^{1 / 2}$; and a χ^{2} computed for these 41 degrees of freedom. The χ^{2} vary from 20 to 73 and seem to suggest that, if anything, the distribution agrees "too well" with the expected distribution.

For the remaining four intervals

$$
\begin{array}{ll}
\left(10^{i}, 10^{i}+2 \cdot 10^{7}\right), & j=15,16 \\
\left(10^{i}, 10^{i}+10^{8}\right), & j=14,16
\end{array}
$$

only the empirical data are given, not the expected values or χ^{2}.
There is included a 13-page Fortran and 360 Assembly Language program. One sees that the estimating integrals were computed with a 16 -point Gauss integration. There also is a 3-page text.

The empirical counts in the interval $\left(10^{14}, 10^{14}+10^{8}\right)$ were tabulated earlier by Weintraub [2]. The data agree.
D. S.

1. R. P. Brent, "The distribution of small gaps between successive primes," Math. Comp., v. 28, 1974, pp. 315-324.
2. S. Weintraub, UMT 27, Math. Comp., v. 26, 1972, p. 596.

8 [9].-Edgar Karst, The Third 2500 Reciprocals and their Partial Sums of all Twin Primes $(p, p+2)$ between $(239429,239431)$ and $(393077,393079)$, University Computer Center, The University of Arizona, Tucson, Arizona, February 1973. Ms. of 207 computer sheets deposited in the UMT file.

9 [9].-Daniel Shanks \& Carol Neild, Brun's Constant, Computation and Mathematics Department, Naval Ship Research and Development Center, Bethesda, Maryland, April 1973. Ms. of 67 computer sheets deposited in the UMT file. For a detailed review of these unpublished tables, see pp. 295-296 of this issue.

